Proceso de selección de agentes
Este artículo recopila información detallada sobre cómo funciona el enrutamiento predictivo en escenarios específicos. Para obtener más información sobre los datos necesarios para optimizar el enrutamiento predictivo, consulte Requisitos de datos para el enrutamiento predictivo.
El enrutamiento predictivo puntúa a los agentes que podrían manejar una interacción mediante un modelo de aprendizaje automático. El aprendizaje automático es eficaz para identificar patrones. En este caso, los patrones identifican a los agentes que manejan con mayor eficacia ciertos tipos de interacciones.
Cuando se activa el enrutamiento predictivo en una cola, Genesys Cloud crea un modelo utilizando varias fuentes de datos, incluidos los datos del perfil del agente, los datos agregados del cliente (como si se trata de una llamada repetida) y los datos históricos de interacción. Cuando se ofrece una interacción a la cola, Genesys Cloud asigna la interacción de la siguiente manera:
- Cuando llega una interacción a esa cola, el enrutamiento predictivo crea una lista de todos los agentes en la cola. El sistema recupera datos sobre el cliente y cada agente disponible. El enrutamiento predictivo no tiene en cuenta el estado del enrutamiento en este punto.
- Filtra la lista para las habilidades lingüísticas del agente y las habilidades ACD no lingüísticas (si Skill matching está activado).
- Genesys Cloud utiliza el modelo para procesar los datos de agentes y clientes en tiempo real y devuelve una clasificación para cada agente disponible. Esta clasificación representa los agentes que el enrutamiento predictivo espera tener el impacto más positivo en el KPI objetivo al manejar esa interacción específica.El agente con la puntuación más alta ocupa el primer lugar.
Nota: Si el número de agentes disponibles en una cola es de tres o menos, Genesys Cloud no puntúa a los agentes, sino que enruta las interacciones utilizando el método de enrutamiento estándar. - Antes de que se agote el tiempo de enrutamiento predictivo (configurado en la página de detalles de la cola), la selección de agentes se realiza de forma diferente en función del número de interacciones que esperan en la cola:
- Excedente de agentes e interacciones - Cuando un agente está disponible, en las colas que tienen habilitado el enrutamiento predictivo, Genesys Cloud calcula la puntuación predictiva del agente para cada una de las interacciones en espera además de la hora de llegada de la interacción y la prioridad. El sistema clasifica todas las interacciones combinando su tiempo de espera con la puntuación predictiva y, a continuación, asigna al agente la interacción mejor clasificada. Este comportamiento significa que si se predice que un agente va a rendir mejor con un cliente que con otro, entonces el enrutamiento predictivo sesgará la asignación de la interacción hacia el cliente con el que se predice que el agente va a rendir mejor. Este método garantiza la mejor utilización del agente disponible en los momentos de excedente de conversación, lo que se traduce en una optimización de los KPI.
Por ejemplo, si la interacción 3 (tiempo de espera 35 segundos) está por encima de la interacción 1 (tiempo de espera 42 segundos), el agente disponible se asigna a la interacción 3. Sin embargo, cuando el ranking de interacción es el mismo para más de una interacción, Genesys Cloud asigna el agente a la interacción con mayor tiempo de espera.
Nota: Método de exceso de interacción puede hacer que los cálculos del tiempo de espera estimado sean menos precisos. - Sólo excedente de agentes - Cuando llega una interacción, Genesys Cloud calcula la puntuación predictiva de los agentes disponibles, clasifica a todos los agentes combinando su tiempo desde la última interacción con su puntuación predictiva y, a continuación, asigna la interacción al agente mejor clasificado. Si los agentes mejor clasificados no están disponibles, el sistema amplía gradualmente el grupo de agentes objetivo, añadiendo agentes peor clasificados. Este proceso continúa hasta que se encuentra un agente o hasta que se agota el tiempo de enrutamiento predictivo.
-
- Excedente de agentes e interacciones - Cuando un agente está disponible, en las colas que tienen habilitado el enrutamiento predictivo, Genesys Cloud calcula la puntuación predictiva del agente para cada una de las interacciones en espera además de la hora de llegada de la interacción y la prioridad. El sistema clasifica todas las interacciones combinando su tiempo de espera con la puntuación predictiva y, a continuación, asigna al agente la interacción mejor clasificada. Este comportamiento significa que si se predice que un agente va a rendir mejor con un cliente que con otro, entonces el enrutamiento predictivo sesgará la asignación de la interacción hacia el cliente con el que se predice que el agente va a rendir mejor. Este método garantiza la mejor utilización del agente disponible en los momentos de excedente de conversación, lo que se traduce en una optimización de los KPI.
- Si Genesys Cloud no encuentra ningún agente que cumpla los requisitos antes de que se agote el tiempo de enrutamiento predictivo o si el número de agentes en la cola es tres o inferior, el sistema enruta la interacción utilizando el enrutamiento estándar , que es el método de enrutamiento alternativo.
Enlaces relacionados:
Cómo puntúa el modelo de IA a los agentes para el enrutamiento predictivo